2018年度工学院大学大学院・電気・電子工学専攻
関数方程式特論(Functional Equations)[3309]
2単位 北原 清志 非常勤講師 [ 教員業績 JP EN ]
- <授業のねらい及び具体的な到達目標>
- 偏微分方程式の変数分離による解法について解説する。工学的応用で最も重要な2階の偏微分方程式について、典型的なモデルを取り上げて学習する。様々な境界条件に対して、解法の見とおしが立てられるようになることを目標にする。なお、この授業を受けるものは応用解析学特論を受講していることが望ましい。
Aim and specific goals: This is a graduate-level partial differential equation course. The course provides the knowledge about basic aspects of the method of separation of variables. We treat typical second order partial differential equations with various boundary conditions such as wave equation, heat equation and Laplace equation.
- <授業計画及び準備学習>
- 1. 偏微分方程式とは
2. 1次元波動方程式 3. 変数の分離 4. 波動方程式のダランベールの解 5. 1次元熱流(定温境界条件) 6. 1次元熱流(断熱境界条件) 7. 1次元熱流(境界条件の一般化) 8. 1次元熱流(方程式の一般化) 9. 無限に長い棒の中の熱流 10. 矩形平板における定常な熱分布 11. 2次元波動方程式 12. 極座標でのラプラシアン 13. 円形膜の振動、ベッセルの方程式 14. 振り返り Subjects in the course: 1. What is partial differential equation? 2. One dimensional wave equation 3. Mehtod of separation of variables 4. d'Alembert's solution to the wave equation 5. One dimensional heat equation with Dirichlet boundary condition 6. One dimensional heat equation with Neumann boundary condition 7. One dimensional heat equation with Cauchy boundary condition 8. Generalized one dimensional heat equation 9. Heat conduction in an infinitely long rod 10. Steady-state temperature distribution in a rectangular plate 11. Two dimensional wave equation 12. Laplacian in Polar coordinates 13. Vibration of a circular membrane, Bessel's equation 14. Reviewing of the course
- <成績評価方法及び水準>
- 提出されたレポートの評価が60点以上を合格とする.
Evaluation: Students must submit a report about partial differential equation at the end of term.
- <教科書>
- フーリエ解析と偏微分方程式(技術者のための高等数学 3)E.クライツィグ著 阿部寛治訳(培風館)
- <参考書>
- 特になし
- <オフィスアワー>
- 授業の前後の休み時間、新宿校舎12階講師室で。
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2018 Kogakuin University. All Rights Reserved. |
|