2015年度工学院大学大学院・機械工学専攻
解析力学特論(Analytical Mechanics)[4401]
2単位 加藤 潔 教授 [ 教員業績 JP EN ]
- <授業のねらい及び具体的な到達目標>
- 解析力学を主題として議論する。まず,定式化に必要な変分法について概説する。引き続いて,古典力学のLagrange形式,Hamilton形式,正準変換,保存則と対称性,拘束系等について議論する。これらの力学の一般論を学んだ後,具体的な事例として各種の振動系を分析する。
- <授業計画及び準備学習>
- ・序論。運動方程式と「最小原理」による手法。光学におけるFermatの定理。
・変分法(1)。関数の極小。関数空間と汎関数。汎関数の極小。 ・変分法(2)。Euler-Lagrangeの方程式。例:最速降下線。 ・変分法(3)。拘束条件と未定乗数法。例:懸垂線。 ・力学の定式化。一般座標。運動方程式。力学的エネルギー。 ・最小作用の原理。Lagrangian。一般化運動量。エネルギー保存則。 ・拘束系の扱い。 ・Hamiltonian。Hamiltonの運動方程式。 ・位相空間。Poissonの括弧式。Liouvilleの定理。断熱不変量。 ・振動系(1)。単振動。抵抗力のある振動。強制振動と共振。 ・振動系(2)。パラメータ共振。 ・振動系(3)。多自由度の場合。基準座標と基準振動。 ・振動系(4)。非調和振動。
- <成績評価方法及び水準>
- 指定された課題について提出されたレポートを評価し,60点以上の者を合格とする。
- <教科書>
- 教材のプリントを配布する。
- <参考書>
- 授業中に指示する。
- <オフィスアワー>
- 木曜日3時限,2714室。
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2015 Kogakuin University. All Rights Reserved. |
|