2019年度工学院大学 建築学部

微分積分I(Calculus I)[5311]

試験情報を見る] [授業を振り返ってのコメント(学内限定)

2単位
小林 康麿 非常勤講師  
最終更新日 : 2019/11/12

<学位授与の方針>
1. 基礎知識の習得
2. 専門分野知識の習得
3. 汎用的問題解決技能
4. 道徳的態度と社会性

<授業のねらい>
1変数関数の微分積分に関する基礎的な演習を行う。
様々な具体的な関数に対して微分積分の計算が出来るようになることを目標とする。
本科目を習得すると、他の数学・力学系科目などが理解しやすくなる。

<受講にあたっての前提条件>
高等学校で習った数学が前提である。特に、高等学校で習った関数(2次関数・三角関数・指数関数・対数関数など)の基本的な性質については一通り身に付いているものとして授業を進める。

<具体的な到達目標>
・初等関数の導関数の計算ができる。
・導関数を用いて不定形の極限値の計算ができる。
・導関数を用いて関数の増減・極値の計算ができる。
・初等関数の不定積分の計算ができる。
・定積分を用いて面積・体積などの計算ができる。

<授業計画及び準備学習>
第1週  ガイダンス、微分係数と導関数
第2週  和・差・積・商・合成関数の微分
    準備学習:高校で学習した微分の復習をしておく事。
         教科書1.3-1.4節の解説を読み、理解しておく事。
第3週  指数関数・対数関数の導関数
    準備学習:高校で学習した指数関数・対数関数の復習をしておく事。
         教科書1.5節の解説を読み、理解しておく事。
第4週  三角関数の導関数
    準備学習:高校で学習した三角関数の復習をしておく事。
         教科書1.6節の解説を読み、理解しておく事。
第5週  逆三角関数の導関数
    準備学習:教科書1.7節の解説を読み、理解しておく事。
第6週  関数の極大極小
    準備学習:教科書1.9節の解説を読み、理解しておく事。
第7週  不定形の極限値とロピタルの定理
    準備学習:教科書1.11節の解説を読み、理解しておく事。
第8週  高階導関数とテイラー展開
    準備学習:教科書1.12-1.13節の解説を読み、理解しておく事。
第9週  原始関数の計算
    準備学習:高校で学習した積分の復習をしておく事。
         教科書2.3節の解説を読み、理解しておく事。
第10週 定積分の定義と計算
    準備学習:教科書2.1-2.3節の解説を読み、理解しておく事。
第11週 置換積分
    準備学習:教科書2.4節の解説を読み、理解しておく事。
第12週 部分積分
    準備学習:教科書2.5節の解説を読み、理解しておく事。
第13週 有理関数の積分
    準備学習:教科書2.6節の解説を読み、理解しておく事。
第14週 学習内容の振り返り
    準備学習:前期に学習した内容の総復習を行い、理解しておく事。

<成績評価方法>
試験期間に実施する定期試験(70〜80%程度)と小テスト(30〜20%程度)により評価する。到達目標に照らして6段階のGrade(A+,A,B,C,D,F)で評価し、GradeD以上の者に単位を認定する。
2014年度以前の入学生:定期試験(70〜80%程度)と小テスト(30〜20%程度)による評価(100点満点)が60点以上の者に単位を認定する。

<教科書>
「理工系のための微分積分」長谷川研二 他(培風館)

<参考書>
「理工系のための基礎数学」高木悟 他(培風館)

<オフィスアワー>
金曜2〜4限の授業前後。八王子校舎1号館講師室(1N-125)

<学生へのメッセージ>
予習・復習をしっかり行い授業に臨む事。
日頃の学習の積み重ねが重要であり、1度覚えた公式などは、その後の授業でも使えるようになって欲しい。

<備 考>
「理工系のための微分積分」「理工系のための基礎数学」の訂正は
http://home.att.ne.jp/air/satorut/book/index.html


ナンバリングはこちら
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2019 Kogakuin University. All Rights Reserved.