2018年度工学院大学 建築学部
線形代数学I(Linear Algebra I)[4211]
2単位 多田 秀樹 非常勤講師
- <学位授与の方針>
◎ | 1. 基礎知識の習得 | | 2. 専門分野知識の習得 | | 3. 汎用的問題解決技能 | | 4. 道徳的態度と社会性 |
- <授業のねらい>
- 線形代数学はベクトルと行列を対象としている。ベクトルについては図示が可能な2、3次元まで高校でも習ったが、それを高次元に拡張する。行列は基本的演算を習得してから連立1次方程式や逆行列の計算法を身につけていく。行列式は線形代数の中で意味が最も理解しにくいが2次元で逆行列との関連を紹介してから、高次元に拡張していく。授業のねらいは
1.ベクトルや行列の演算ができる。 2.行列の応用として連立1次方程式が解ける。 3.行列の階数と逆行列の計算ができる。 4.逆行列と行列式の関係を理解し、行列式と余因子の計算と応用ができる。
- <受講にあたっての前提条件>
- 高校の数学Bのベクトルを復習すること。
- <具体的な到達目標>
- 1.ベクトルや行列の演算規則を理解して、正しく計算できる。
2.連立1次方程式を行列で表現して、行の基本変形によって解を求める。 3.基本変形を使って行列の階数や逆行列を計算する。 4.順列で行列式を定義して、行列式の計算に必要な成分の変形方法を身につける。 5.余因子の応用として逆行列の成分や連立1次方程式の解を計算する。
- <授業計画及び準備学習>
- 1. ベクトルの演算
ベクトルの定義,ベクトルの和・差・スカラー倍について解説する。 準備学習:高校で使用していた「数学II」教科書のベクトルの部分を熟読し、その練習問題を必ず解いて おくこと. 2. ベクトルの内積と外積 ベクトルの内積・外積について解説する。 準備学習:前回学習したベクトルとその演算について復習し、関連する問題を解いておくこと。 3. 行列とその演算 行列の定義,行列の和・差・スカラー倍・積について解説する。 準備学習:前回学習したベクトルの内積と外積について復習し、関連する問題を解いておくこと。 4. 転置行列と逆行列 転置行列と逆行列について、それらの定義と性質を解説する。 準備学習:前回学習した行列とその演算について復習し、関連する問題を解いておくこと。 5. 行列の基本変形と階数 行列の基本変形について解説し、それによって得られる階数について説明する。 準備学習:前回学習した転置行列と逆行列について復習し、関連する問題を解いておくこと。 6. 逆行列の計算 基本変形を用いて逆行列を求める方法を解説する。 準備学習:前回学習した基本変形と階数について復習し、関連する問題を解いておくこと。 7. 連立1次方程式 連立1次方程式と行列との関係について解説する。 準備学習:行列の演算について復習し、関連する問題を解いておくこと。 8. 掃き出し法 行の基本変形を用いて連立1次方程式を解く掃き出し法について解説する。 準備学習:行の基本変形について復習し、さらに前回学習した連立1次方程式と行列との関係 についても復習し、関連する問題を解いておくこと。 9. 置換と行列式 置換と,行列式の置換による定義を解説する。 準備学習:前回学習した掃き出し法について復習し、関連する問題を解いておくこと。 10. 行列式の性質 行列式の性質について解説する。 準備学習:前回学習した置換と行列式の定義について復習し、関連する問題を解いておくこと。 11. 行列式の余因子展開 行列式を余因子展開して計算する方法を解説する。 準備学習:前回学習した行列式の性質について復習し、関連する問題を解いておくこと。 12. 余因子と逆行列 行列式と余因子から逆行列を計算する方法を解説する. 準備学習:前回学習した行列式の余因子展開による計算方法を復習し、関連する問題を解いておくこと。 13. クラーメルの公式 クラーメルの公式により連立1次方程式を解く方法を解説する。 準備学習:前回学習した余因子による逆行列の計算方法を復習し、関連する問題を解いておくこと。 14. 学習内容の振り返り 準備学習:期末試験で解けなかった問題の解き方を考えておくこと。
- <成績評価方法>
- 試験期間に実施する期末試験100%。到達目標に照らして、6段階のGrade(A+,A,B,C,D,F)で評価し、D以上の者に単位を認める。ただし、2014年以前入学者は試験期間に実施する100点満点の期末試験で60点以上の者に単位を認める。
- <教科書>
- 高木悟 他「理工系のための線形代数」培風館
- <参考書>
- 高木悟 他「理工系のための基礎数学」培風館
金子晃「線形代数講義」サイエンス社 斎藤正彦「線型代数入門」東京大学出版会
- <オフィスアワー>
- 木曜日13:30〜17:30(授業前後の講師室)
- <備 考>
- 「理工系のための線形代数」「理工系のための基礎数学」の訂正は
http://home.att.ne.jp/air/satorut/book/index.html
ナンバリングはこちら
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2018 Kogakuin University. All Rights Reserved. |
|