| 2018年度工学院大学 第1部機械工学科
 
 
○微分積分A(Calculus A)[1101]
 1単位
 北原 清志 非常勤講師  [ 教員業績  JP  EN ]
 
 
<学位授与の方針>| ◎ | 1. 基礎知識の習得 |  |  | 2. 専門分野知識の習得 |  |  | 3. 汎用的問題解決技能 |  |  | 4. 道徳的態度と社会性 | 
<授業のねらい>1変数関数の微分について学習する。具体的な内容は、べき関数・三角関数・指数関数・対数関数などの初等関数の微分計算、合成関数の微分法とその応用、不定形の極限値、高階導関数とその応用、テイラー展開とその応用などである。積分のほか、さらに高度な数学を学ぶための基礎となる科目である。<受講にあたっての前提条件>高校の数学を復習しておく。本科目習得後は「微分積分B・C・D」に進み、「工業数学A・B」などの科目を履修することができる。
<具体的な到達目標>1. 微分の基本公式や合成関数の微分法を利用して、導関数を計算することができる。2. ロピタルの定理を利用して不定形の極限を計算することができる。
 3. 基本的な関数のマクローリン展開を作ることができる。
 (JABEE学習・教育到達目標)
 「機械工学エネルギー・デザインプログラム」:D-1◎
 「機械システム基礎工学プログラム」:C-1◎
<授業計画及び準備学習>1. 微分係数と導関数関数の微分係数と導関数を定義して、整関数の導関数が計算できるようになる。
 準備学習:高校の数学の教科書を復習する。教科書1.3〜1.4節を熟読して問題を解いておく
 こと。
 2. 初等関数の微分法
 積と商、または三角関数等の導関数の公式を導き、基本的な初等関数の導関数が計算できる
 ようになる。
 準備学習:教科書1.5〜1.6節を熟読して問題を解いておくこと。
 3. 合成関数の微分法
 合成関数の微分の公式を解説して、多様な初等関数の導関数が計算できるようになる。
 準備学習:教科書1.3〜1.6節を熟読して問題を解いておくこと。
 4. 逆三角関数
 三角関数の逆関数である逆三角関数を解説して、導関数の計算ができるようになる。
 準備学習:教科書1.7節を熟読して問題を解いておくこと。
 5. 不定形の極限
 導関数の応用として不定形の関数の極限値を求める。
 準備学習:教科書1.11節を熟読して問題を解いておくこと。
 6. 高次導関数とテイラー展開
 2階以上の導関数を計算して、テイラー展開で一般の関数を整関数で近似できることを学ぶ。
 準備学習:教科書1.12〜1.13節を熟読して問題を解いておくこと。
 7. 学習内容の振り返り
 準備学習:期末試験で解けなかった問題の解き方を教科書で確認すること。
<成績評価方法>試験期間に実施する期末試験100%。到達目標に照らして、6段階のGrade(A+,A,B,C,D,F)で評価し、D以上の者に単位を認める。<教科書>長谷川研二 他「理工系のための微分積分」培風館<参考書>高木悟 他「理工系のための基礎数学」培風館<オフィスアワー>授業の前後の休み時間、八王子校舎1階講師室で。<備 考>「理工系のための微分積分」「理工系のための基礎数学」の訂正はhttp://home.att.ne.jp/air/satorut/book/index.html
 
 
| ナンバリングはこちら このページの著作権は学校法人工学院大学が有しています。
 Copyright(c)2018 Kogakuin University. All Rights Reserved.
 |  |