2017年度工学院大学 建築学部
△微分積分I(Calculus I)[5309]
2単位 熊ノ郷 直人 教授 [ 教員業績 JP EN ]
- <学位授与の方針>
◎ | 1. 基礎知識の習得 | | 2. 専門分野知識の習得 | | 3. 汎用的問題解決技能 | | 4. 道徳的態度と社会性 |
- <授業のねらい>
- 1変数関数の微分・積分について学習する。具体的な内容は、
・べき関数・三角関数・指数関数・対数関数などの初等関数の微分計算、合成関数の微分法とその応用、不定形の極限値、高階導関数とその応用、テイラー展開とその応用 ・定積分と不定積分、初等関数の積分計算、置換積分法と部分積分法およびその応用、有理関数の積分計算 などであり、微分方程式や多変数関数の微分積分などさらに高度な数学を学ぶための基礎となる科目である。
- <受講にあたっての前提条件>
- 高校の数学を復習しておく。
- <具体的な到達目標>
- 1. 微分の基本公式や合成関数の微分法を利用して、導関数を計算することができる。
2. ロピタルの定理を利用して不定形の極限を計算することができる。 3. 基本的な関数のマクローリン展開を作ることができる。 4. 微分の公式を逆用して、基本的な関数の原始関数を計算することができる。 5. 置換積分法や部分積分法を利用して、積分を計算することができる。
- <授業計画及び準備学習>
- 1. 微分係数と導関数
関数の微分係数と導関数を定義して、整関数の導関数が計算できるようになる。 準備学習:高校の数学の教科書を復習する。教科書1-3〜1-4節を熟読して問題を解いておくこと。 2. 初等関数の微分法 積と商、または三角関数等の導関数の公式を導き、基本的な初等関数の導関数が計算できるよう になる。 準備学習:教科書1-5〜1-6節を熟読して問題を解いておくこと。 3. 合成関数の微分法 合成関数の微分の公式を解説して、対数微分法や多様な初等関数の導関数が計算できるようになる。 準備学習:教科書1-8節を熟読して問題を解いておくこと。 4. 逆三角関数 三角関数の逆関数である逆三角関数を解説して、導関数の計算ができるようになる。 準備学習:教科書1-7節を熟読して問題を解いておくこと。 5. 不定形の極限 導関数の応用として不定形の関数の極限値を求める。 準備学習:教科書1-11節を熟読して問題を解いておくこと。 6. 高次導関数とテイラー展開 2階以上の導関数を計算して、テイラー展開で一般の関数を整関数で近似できることを学ぶ。 準備学習:教科書1-12〜1-13節を熟読して問題を解いておくこと。 7. 微分の総復習 準備学習:今までに授業で扱った問題のうち、解けなかった問題の解き方を教科書で確認すること。 8. 原始関数の計算 準備学習:導関数の逆演算である原始関数の公式を導き、計算できるようになる。 「微分」を復習しておく。教科書2-3節を熟読し、問題(問2.1〜2.2)を解いておくこと。 9. 定積分の定義と計算 定積分を定義して、原始関数を使って計算できるようになる。 準備学習:教科書2-1〜2-2節を熟読し、問題を解いておくこと。 10. 初等関数の積分 基本的な初等関数の積分が計算できるようになる。 準備学習:教科書2-3節を熟読し、問題(問2.3〜2.4)を解いておくこと。 11. 置換積分法 置換積分の公式を解説して、やや複雑な関数の積分が計算できるようになる。 準備学習:教科書2-4節を熟読し、問題を解いておくこと。 12. 部分積分法 部分積分の公式を解説して、やや複雑な関数の積分が計算できるようになる。 準備学習:教科書2-5節を熟読し、問題を解いておくこと。 13. 有理関数の積分 一般的な方法で有理関数の積分が計算できるようになる。 準備学習:教科書2-6節を熟読し、問題を解いておくこと。 14. 学習内容の振り返り 準備学習:期末試験で解けなかった問題の解き方を教科書で確認すること。
- <成績評価方法>
- 試験期間に実施する期末試験100%。到達目標に照らして、6段階のGrade(A+,A,B,C,D,F)で評価し、
D以上の者に単位を認める。 ただし、2014年度以前入学者については、試験期間に実施する期末試験(100点満点)の得点が60 点以上の者に単位を認める。
- <教科書>
- 長谷川研二 他「理工系のための微分積分」培風館
- <参考書>
- 高木悟 他「理工系のための基礎数学」培風館
- <オフィスアワー>
- 水曜日12:50-13:40(八王子校舎総合教育棟01E-315)
- <備 考>
- 「理工系のための微分積分」「理工系のための基礎数学」の訂正は
http://home.att.ne.jp/air/satorut/book/index.html
ナンバリングはこちら
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2017 Kogakuin University. All Rights Reserved. |
|