2017年度工学院大学 工学部電気電子工学科

微分積分A(Calculus A)[3407]

試験情報を見る] [授業を振り返ってのコメント(学内限定)

1単位
高木 悟 非常勤講師  [ 教員業績  JP  EN ]
最終更新日 : 2018/09/28

<学位授与の方針>
1. 基礎知識の習得
2. 専門分野知識の習得
3. 汎用的問題解決技能
4. 道徳的態度と社会性

<授業のねらい>
1変数関数の微分について学習する。具体的な内容は、べき関数・三角関数・指数関数・対数関数などの初等関数の微分計算、合成関数の微分法とその応用、不定形の極限値、高階導関数とその応用、テイラー展開とその応用などである。積分のほか、さらに高度な数学を学ぶための基礎となる科目である。

<受講にあたっての前提条件>
高校の数学を復習しておく。
本科目習得後は「微分積分B・C・D」に進み、「工業数学A・B」などの科目を履修することができる。

<具体的な到達目標>
1. 微分の基本公式や合成関数の微分法を利用して、導関数を計算することができる。
2. ロピタルの定理を利用して不定形の極限を計算することができる。
3. 基本的な関数のマクローリン展開を作ることができる。
(JABEE学習・教育到達目標)
「機械工学エネルギー・デザインプログラム」:D-1◎
「機械システム基礎工学プログラム」:C-1◎

<授業計画及び準備学習>
1. 微分係数と導関数
  関数の微分係数と導関数を定義して、整関数の導関数が計算できるようになる。
  準備学習:高校の数学の教科書を復習する。教科書1-3〜1-4節を熟読して問題を解いておくこと。
2. 初等関数の微分法
  積と商、または三角関数等の導関数の公式を導き、基本的な初等関数の導関数が計算できるよう
  になる。  
  準備学習:教科書1-5〜1-6節を熟読して問題を解いておくこと。
3. 合成関数の微分法
  合成関数の微分の公式を解説して、対数微分法や多様な初等関数の導関数が計算できるようになる。
  準備学習:教科書1-8節を熟読して問題を解いておくこと。
4. 逆三角関数
  三角関数の逆関数である逆三角関数を解説して、導関数の計算ができるようになる。
  準備学習:教科書1-7節を熟読して問題を解いておくこと。
5. 不定形の極限
  導関数の応用として不定形の関数の極限値を求める。
  準備学習:教科書1-11節を熟読して問題を解いておくこと。
6. 高次導関数とテイラー展開
  2階以上の導関数を計算して、テイラー展開で一般の関数を整関数で近似できることを学ぶ。
  準備学習:教科書1-12〜1-13節を熟読して問題を解いておくこと。
7. 学習内容の振り返り
  準備学習:期末試験で解けなかった問題の解き方を教科書で確認すること。

<成績評価方法>
試験期間に実施する期末試験100%。到達目標に照らして、6段階のGrade(A+,A,B,C,D,F)で評価し、D以上の者に単位を認める。

<教科書>
長谷川研二 他「理工系のための微分積分」培風館

<参考書>
高木悟 他「理工系のための基礎数学」培風館

<オフィスアワー>
水曜日 13:00-14:00 八王子キャンパス 1号館 1E-314 (数学研究室)

<学生へのメッセージ>
毎回授業中に問題演習の時間を設けるので,分からないところがあればどんどん質問してください.
学習支援センターも活用しましょう.

<備 考>
教科書は毎回使うので必ず持参すること.
数学があまり得意でない学生は,参考書も持参すると理解の助けになる.

教科書・参考書の訂正情報は,第1回目の授業前に必ず確認しておくこと.

「理工系のための微分積分」「理工系のための基礎数学」の訂正は
http://home.att.ne.jp/air/satorut/book/index.html

<参考ホームページアドレス>
http://home.att.ne.jp/air/satorut/lec/index.html


ナンバリングはこちら
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2017 Kogakuin University. All Rights Reserved.