2016年度工学院大学 建築学部

微分積分II(Calculus II)[3211]

試験情報を見る] [授業を振り返ってのコメント(学内限定)

2単位
陸名 雄一 非常勤講師  
最終更新日 : 2016/10/27

<学位授与の方針>
1. 基礎知識の習得
2. 専門分野知識の習得
3. 汎用的問題解決技能
4. 道徳的態度と社会性
5. 創成能力

<授業のねらい>
多変数関数とくに2変数関数の微分(偏微分)と積分(重積分)について学習する。変数の数が増えると数式が複雑になり難しく感じるが、微分の考え方は1変数の場合と同様である。この点を理解し、微分・積分に対する広い視野を得ることを目指す。具体的な内容は、
・偏微分係数・偏導関数、合成関数の微分法とその応用、高階偏導関数、テイラー展開、極値問題
・重積分と累次(繰り返し)積分、積分順序の交換、重積分の変数変換とその応用
などである。本科目の習得後は複素関数論、ベクトル解析など幅広い応用数学分野を学ぶことができる。

<受講にあたっての前提条件>
微分積分Tで学んだ内容

<具体的な到達目標>
1. 多変数関数の偏導関数を計算することができる。
2. 合成関数の微分法を正しく適用することができる。
3. 2変数関数の極値を求めることができる。
4. 重積分を累次積分に書き直して計算することができる。
5. 変数変換公式を利用して重積分を計算することができる。

<授業計画及び準備学習>
1. 偏微分係数と偏導関数
  偏微分の定義と直観的な意味が分かり、簡単な関数の計算ができる。
  準備学習:「微分」で学習した微分の定義と意味および計算の復習をしておく。
  教科書3-1節〜3-2節を熟読し、問題を解いておくこと。
2. 高階偏導関数
  高階偏導関数の性質を理解し、簡単な関数の計算ができる。
  準備学習:教科書3-3節を熟読し、問題を解いておくこと。
3. 合成関数の微分法
  多変数関数の合成関数とその偏微分について理解し具体的な計算ができる。
  準備学習:教科書A-9節を熟読しておくこと。
4. 2変数関数のテイラー展開
  関数が無限級数によって表示できることを理解し具体的な計算ができる。
  準備学習:教科書3-4節を熟読し、問題を解いておくこと。
5. 2変数関数の極大・極小
  2変数関数の極値問題について理解し簡単な場合に計算ができる。
  準備学習:教科書3-5節を熟読し、問題(問3.6)を解いておくこと。
6. 2変数関数の極値問題の解法
  応用も含めて具体的な極値問題を正しく扱うことができる。
  準備学習:教科書3-5節を熟読し、問題(問3.7)を解いておくこと。
7. 中間試験
  準備学習:第 6 回までの内容を確認すること。
8. 2重積分と累次積分
  2重積分の概念を理解し、累次積分との関係について学ぶ。
  準備学習:「積分」で学んだ基本公式を十分に復習しておく。
  教科書4-1節〜4-2節を熟読し、問題を解いておくこと。
9. 2重積分の計算
  2重積分の具体的な計算が正しく実行できる。
  準備学習:教科書4-3節〜4-4節を熟読し、問題(問4.2)を解いておくこと。
10. 積分順序の交換
  積分の順序交換の意味を理解し,具体的な問題について正しく実行できる。
  準備学習:教科書4-4節を熟読し、問題(問4.3)を解いておくこと。
11. 極座標と変数変換
  極座標を用いた変数変換の意味を理解し具体的な計算ができる。
  準備学習:教科書4-5節〜4-6節を熟読し、問題(問4.4〜4.5)を解いておくこと。
12. 変数変換公式
  広く用いられている変数変換の意味を理解し具体的な計算ができる。
  準備学習:教科書4-6節を熟読し、問題(問4.6)を解いておくこと。
13. 3重積分
  2重積分の拡張としての3重積分の概念を理解し具体的な計算ができる。
  準備学習:教科書4-8節を熟読し、問題を解いておくこと。
14. 学習内容の振り返り
  準備学習:期末試験で解けなかった問題の解き方を教科書で確認すること。

<成績評価方法>
授業内で実施する中間試験50%、試験期間に実施する期末試験50%。到達目標に照らして、6段階のGrade(A+,A,B,C,D,F)で評価し、D以上の者に単位を認める。

<教科書>
長谷川研二 他「理工系のための微分積分」培風館

<参考書>
高木悟 他「理工系のための基礎数学」培風館

<オフィスアワー>
授業後、教室にて質問を受け付ける。


このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2016 Kogakuin University. All Rights Reserved.