2015年度工学院大学 先進工学部環境化学科

微分(Differentiation)[1142]

試験情報を見る] [授業を振り返ってのコメント(学内限定)

1単位
上江洲 弘明 非常勤講師  
最終更新日 : 2016/01/21

<授業のねらい>
1変数関数の微分について学習する。具体的な内容は、べき関数・三角関数・指数関数・対数関数などの初等関数の微分計算、合成関数の微分法とその応用、不定形の極限値、高階導関数とその応用、テイラー展開とその応用などである。積分のほか、さらに高度な数学を学ぶための基礎となる科目である。

<受講にあたっての前提条件>
高校の数学を復習しておく。

<具体的な到達目標>
1. 微分の基本公式や合成関数の微分法を利用して、導関数を計算することができる。
2. ロピタルの定理を利用して不定形の極限を計算することができる。
3. 基本的な関数のマクローリン展開を作ることができる。
(JABEE学習・教育到達目標)
「国際工学プログラム」:(C)◎

<授業計画及び準備学習>
1. 微分係数と導関数
  関数の微分係数と導関数を定義して、整関数の導関数が計算できるようになる。
  準備学習:高校の数学の教科書を復習する。
2. 初等関数の微分法
  積と商、または三角関数等の導関数の公式を導き、基本的な初等関数の導関数が計算できるよう
  になる。
  準備学習:教科書を読んでおく。
3. 合成関数の微分法
  合成関数の微分の公式を解説して、対数微分法や多様な初等関数の導関数が計算できるようになる。
  準備学習:教科書を読んでおく。返却された答案用紙を復習する。
4. 逆三角関数
  三角関数の逆関数である逆三角関数を解説して、導関数の計算ができるようになる。
  準備学習:教科書を読んでおく。返却された答案用紙を復習する。
5. 不定形の極限
  導関数の応用として不定形の関数の極限値を求める。
  準備学習:教科書を読んでおく。返却された答案用紙を復習する。
6. 高次導関数とテイラー展開
  2階以上の導関数を計算して、テイラー展開で一般の関数を整関数で近似できることを学ぶ。
  準備学習:教科書を読んでおく。返却された答案用紙を復習する。
7. 学習成果の確認(試験)
  準備学習:前回までの総復習を行う。
8. 学習内容の振り返り
  試験結果を踏まえて、講評を行う。

<成績評価方法>
期末試験100%。到達目標に照らして、6段階のGrade(A+,A,B,C,D,F)で評価し、D以上の者に単位を認める。

<教科書>
理工系の基礎 微分積分(増補版) 石原繁・浅野重初共著(裳華房)

<参考書>
数学基礎プラスγ(解析学編) 上江洲弘明著(早稲田大学出版部)

<オフィスアワー>
授業前または授業後30分程度


このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2015 Kogakuin University. All Rights Reserved.