2015年度工学院大学 第1部電気システム工学科
数学演習I(Exercises in Mathematics I)[4205]
1単位 岸 俊晴 非常勤講師
- <授業のねらい>
- 問題演習を通じて、一変数の微分・積分に関する定義、定理や公式を身につける。
- <受講にあたっての前提条件>
- 多項式関数等の基本的な関数について、極限、微分、積分を計算できること。
- <具体的な到達目標>
- ○ 積・商・合成関数の微分法を組み合わせて、様々な関数の導関数を求めることが出来る。
○ 接線を利用し、平方根等の近似値を計算できる。 ○ 置換積分法や部分積分法を用いて、基本的な関数の原始関数を計算できる。
- <授業計画及び準備学習>
- 【第1週】微分・積分の概要
準備学習:高校の教科書における微分・積分の内容を整理しておくこと。 【第2週】関数とグラフ 準備学習:配布プリントの課題に取り組んでおくこと。(関数の定義、偶関数・奇関数、合成関数) 【第3週】指数関数と対数関数 準備学習:配布プリントの課題に取り組んでおくこと。(逆関数の定義と性質、指数・対数) 【第4週】三角関数・逆三角関数 準備学習:配布プリントの課題に取り組んでおくこと。(三角比、弧度法) 【第5週】関数の極限 準備学習:配布プリントの課題に取り組んでおくこと。(極限の定義) 【第6週】基本的な関数の微分 準備学習:配布プリントの課題に取り組んでおくこと。(復習) 【第7週】様々な微分法(積の微分、商の微分、合成関数の微分) 準備学習:配布プリントの課題に取り組んでおくこと。(公式の証明) 【第8週】微分法の応用(接線、近似値) 準備学習:配布プリントの課題に取り組んでおくこと。(復習) 【第9週】微分法の応用(関数のグラフ) 準備学習:配布プリントの課題に取り組んでおくこと。(近似値計算に関する考察) 【第10週】ロピタルの定理 準備学習:配布プリントの課題に取り組んでおくこと。(復習) 【第11週】定積分の定義と計算 準備学習:配布プリントの課題に取り組んでおくこと。(Σ記号の計算) 【第12週】不定積分(基本的な関数の不定積分、置換積分法) 準備学習:配布プリントの課題に取り組んでおくこと。(復習) 【第13週】不定積分(瞬間置換積分法、部分積分法) 準備学習:配布プリントの課題に取り組んでおくこと。(部分積分法) 【第14週】不定積分(三角関数、有理関数の不定積分) 準備学習:配布プリントの課題に取り組んでおくこと。(復習) 【第15週】学習成果の確認(試験) 準備学習:前回までの総復習を行うこと。
- <成績評価方法>
- 成績は、期末試験80%、演習問題への取り組み状況20%で評価する。Grade D以上の者に単位を認める。
ただし、2014年度以前入学者については、下記により評価する。
「定期試験の点数」(A)と「演習問題への取り組み状況」(B)の合計により評価を行う。60点以上を合格とする。配点の内訳は以下の通り。
A 定期試験:(100点満点)× 0.8。ただし、小数点以下は切り捨て。 B 演習問題への取り組み状況:講義時間中に毎回行う小テスト(2点満点)の合計。ただし、20点を超えた分は切り捨て。
- <教科書>
- 指定教科書なし
- <参考書>
- 指定参考書なし
- <オフィスアワー>
- 木曜日4限終了までの休み時間、八王子校舎講師室。
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2015 Kogakuin University. All Rights Reserved. |
|