2015年度工学院大学 第1部機械工学科 エコエネルギーコース

統計学I(Statistics I)[5B01]

試験情報を見る] [授業を振り返ってのコメント(学内限定)

2単位
菱田 博俊 准教授  [ 教員業績  JP  EN ]
最終更新日 : 2016/01/21

<学位授与の方針>
1. 基礎知識の習得
2. 専門分野知識の習得
3. 汎用的問題解決技能
4. 道徳的態度と社会性
5. 創成能力

<授業のねらい>
 統計学が工学においてどう役立つかを、実際に自分たちの手で採ったデータを処理する事を通して学ぶ。具体的には、以下の作業ができる様に、理論と実践の両面から勉強する。

1)代表的なデータの分布である二項分布、正規分布の原理を知り、データに適用する。
2)正規分布とカイ二乗分布の関係を知り、正規分布に従うデータの検定を行う。
3)相関係数を理解し、多次元データの相関性について議論する。
4)自分の用意したデータを、実際にEXCEL等を用いて処理する。

<受講にあたっての前提条件>
 真面目に地道に勉強する者のみ来たれ。不真面目だと手に負えない。 

<具体的な到達目標>
1)二項分布、正規分布を使いこなせる。
2)カイ二乗分布を検定の道具として、ある程度使える。
3)相関係数を理解し、多次元データの相関性を論じられる。
4)EXCEL等を用いて、実際にデータ処理できる。

JABEE学習・教育目標「機械工学エネルギー・デザインプログラム」:(D)◎

<授業計画及び準備学習>
 初回に単位取得に関係する講義運営システムの説明と一般的な諸注意をするので、必ず出席されたい。万一欠席した場合には、必ず友人等に内容を確認しておく事。
 各授業の冒頭に、次の講義までに獲って来てもらいたいデータの内容を課題として提示するので、次の講義ではそのデータを用意した上で出席する事(従って、初回に限りデータを用意する必要は無い)。各回、そのデータを用いて具体的な講義を進める。
 全15回、途中で3回試験をする。いつ実施するかは様子を見ながら決定するので、気をつけておくこと。試験日には出席必須(出席しなければ0点)。

1.度数分布、代表値、平均、分散
2.相関係数
3.確率変数
4.二次元確率変数
5.二項分布、正規分布
6.カイ二乗、ティ、エフ分布
7.推測統計(検定)
8.データの取り方

<成績評価方法>
 原則として3回の試験で評価するが、毎回のデータ収集やデータ処理訓練も含めた総合評価とする事もある。詳細な評価方法については、初日に説明する。

 3回の試験はそれぞれ60分100点満点で、それを25点以上に換算する。教科書、ノート等の持込は認める予定だが、いきなり教科書を見ながら解ける問題は出さないので、ちゃんと勉強した上で持ち込む事。
 60点以上のものに単位を認める。

<教科書>
5月頃出版予定の教科書を初日等に連絡する。
教科書が出版されるまでは補足資料を用いる。

<参考書>
・レベル1:本当の初心者に例を上げつつ説明している。解らない者向け。
  ⇒ 石村園子・石村貞夫:”初歩からはじめる統計学”, 共立出版株式会社.
  ⇒ 小寺平治:”新統計入門”, 裳華房.
・レベル2:これは本来工学部正が対象ではないが、Excelを用いてデータ処理をする実際のノウハウを記しているので、とても有効である。初めてデータ処理をさせられる者向け。
  ⇒ 正井栄一・片山納:”医学・保健学の為のやさしい統計学”, 金原出版株式会社.
・レベル3:内容は良いが、レイアウトが圧力的なので、少々慣れた者が演習するのに向いている。演習の解答が充実している。
  ⇒ 大橋常道・谷口哲也・山下登茂紀:”初学者にやさしい統計学”, コロナ社.
・レベル4:コンパクトにまとまっている。演習の解答が詳細なので、やはり演習希望者向け。ちょっとした携帯参考書になるだろう。
  ⇒ 伊藤正義・伊藤公紀:”わかりやすい数理統計の基礎”, 森北出版株式会社.
・レベル5:本来、統計学と言ったらこのレベルの教科書だろうが、文章が現在の大学生にとっては少々ハイレベルと懸念されるので中級以上向きとしておきたい。図表が完備されている。
  ⇒ E.クライスィグ・訳/田栗正章:”確率と統計”, 技術者の為の高等数学7, 培風館.
・ハイレベル:充実した内容なので、もっと統計学を極めたい者はぜひチャレンジされたし。 ⇒ 東京大学教養学部統計学教室:”統計学入門”, 東京大学出版会.

 なお、漫画の教科書があるので、紹介する。後半は漫画と言えども結構ついていくのに苦労する。
  ⇒ 高橋信:”漫画で解る統計学”, オーム社.

<オフィスアワー>
 月曜、木曜、金曜は原則1714室または人間工学研究室関連各所にいる。

<学生へのメッセージ>
 本来座学ですが、実際に手を動かして貰う。データ処理を実際にしないと、統計学の有難味や必要性は解らないからである。従って、実際にデータを獲って貰うので、データと言う物にも親近感を持ってもらえれば、卒論につながると思う。
 なお、この講義を受けている者は、人間工学研究室のセミナー、卒論の配属先選抜で優遇する。人間工学研究に必要だからである。万一受けずに希望した場合には、4年になって受けて貰う事を条件に受け入れる事がある。

<備 考>
 3年にもなると、例年たるむ者も増えてくる。本授業は必修ではないので、誠意が認められない学生には点を与えない。特に、教室で騒ぐ等、他の学生に迷惑を掛ける者は受講停止措置を採る事がある。


このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2015 Kogakuin University. All Rights Reserved.