2014年度工学院大学 第1部電気システム工学科

数学演習II(Exercises in Mathematics II)[4216]

試験情報を見る] [授業を振り返ってのコメント(学内限定)

1単位
岸  俊晴 非常勤講師  
最終更新日 : 2015/02/13

<授業のねらい>
問題演習を通じて、「数学II」で学んだ定義、定理や公式を身につける。主に、2変数関数の微分積分を扱う。

<受講にあたっての前提条件>
「数学演習I」を受講していること。

<具体的な到達目標>
○ 基本的な関数の広義積分を計算できる。比較判定法等により、収束・発散を調べられる。
○ Taylor 展開・Maclaurin 展開を計算でき、近似値計算等へ利用できる。
○ 二変数関数について、微分可能性の意味を理解できる。
○ 積分の順序交換や変数変換により、二重積分を計算できる。

<授業計画及び準備学習>
【第1週】三角関数の積分、有理関数の積分
 準備学習:「数学演習I」の内容のうち、特に「不定積分」を復習しておくこと。
【第2週】広義積分
 準備学習:配布プリントの課題に取り組んでおくこと。(定積分の計算)
【第3週】級数の収束・発散
 準備学習:「数学演習I」の内容のうち、特に「数列と級数」を復習しておくこと。
【第4週】Taylor 展開・Maclaurin 展開
 準備学習:配布プリントの課題に取り組んでおくこと。(復習)
【第5週】二変数関数のグラフと極限値
 準備学習:配布プリントの内容を理解しておくこと。
【第6週】偏微分
 準備学習:配布プリントの課題に取り組んでおくこと。
【第7週】空間ベクトル
 準備学習:配布プリントの課題に取り組んでおくこと。
【第8週】二変数関数の微分可能性について
 準備学習:配布プリントの内容を理解しておくこと。
【第9週】二変数関数の極値
 準備学習:配布プリントの内容を理解しておくこと。
【第10週】二重積分と累次積分
 準備学習:配布プリントの内容を理解しておくこと。
【第11週】二重積分の計算
 準備学習:前回の内容を復習しておくこと。
【第12週】二重積分(順序交換)
 準備学習:前回の内容を復習しておくこと。
【第13週】二重積分(変数変換)
 準備学習:前回の内容を復習しておくこと。
【第14週】まとめ(発展的な話題を紹介します)
 準備学習:微分・積分全般について、整理しておくこと。
【第15週】学習成果の確認(試験)
 準備学習:前回までの総復習を行うこと。

<成績評価方法及び水準>
「定期試験の点数」(A)と「演習問題への取り組み状況」(B)の合計により評価を行う。60点以上を合格とする。配点の内訳は以下の通り。

A 定期試験:(100点満点)× 0.8。ただし、小数点以下は切り捨て。
B 演習問題への取り組み状況:講義時間中に毎回行う小テスト(2点満点)の合計。ただし、20点を超えた分は切り捨て。

<教科書>
指定教科書なし

<参考書>
指定参考書なし

<オフィスアワー>
木曜日3限終了までの休み時間、八王子校舎1号館講師室。


このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2014 Kogakuin University. All Rights Reserved.