2014年度工学院大学 第1部環境エネルギー化学科
○数学II(Mathematics II)[5213]
2単位 小林 康麿 非常勤講師
- <学位授与の方針>
◎ | 1. 基礎知識の習得 | ○ | 2. 専門分野知識の習得 | ○ | 3. 汎用的問題解決技能 | | 4. 道徳的態度と社会性 | | 5. 創成能力 |
- <授業のねらい>
- 数学IIでは数学Iで学習した内容を踏まえて、1変数関数の積分とテイラー展開、多変数関数の微分の初歩として2変数関数の極値について学習する。
不定積分の計算ができ、テイラー展開の有用性と偏微分の意味を理解することを目標とする。 特にテイラー展開は一般の関数の数値計算において有用であり、工学等への応用の観点からも重要なものと言えるだろう。
- <受講にあたっての前提条件>
- 高等学校で習った数学と、前期で学習した微分の知識が身に付いている事が前提である.
- <具体的な到達目標>
- ・初等関数の不定積分の計算ができる。
・定積分を用いて面積・体積などの計算ができる。 ・導関数を用いてテイラー展開の計算ができる。 ・2変数関数の偏導関数の計算ができる。 ・偏導関数を用いて2変数関数の極値の計算ができる。
- <授業計画及び準備学習>
- 第1週 ガイダンス、微分積分法の基本定理
第2週 基本的な関数の不定積分 準備学習:教科書pp.100-104の解説を読み、理解しておく事。 第3週 置換積分法 準備学習:教科書pp.105-106の解説を読み、理解しておく事。 第4週 部分積分法 準備学習:教科書pp.107-108の解説を読み、理解しておく事。 第5週 有理関数の積分 準備学習:教科書pp.109-111の解説を読み、理解しておく事。 第6週 定積分の計算 準備学習:教科書pp.117-123の解説を読み、理解しておく事。 第7週 定積分の置換積分と部分積分 準備学習:教科書pp.124-127の解説を読み、理解しておく事。 第8週 面積・体積の計算 準備学習:教科書pp.132-138の解説を読み、理解しておく事。 第9週 高次導関数 準備学習:教科書pp.77の解説を読み、理解しておく事。 第10週 テイラーの定理とテイラー展開 準備学習:教科書pp.93-97の解説を読み、理解しておく事。 第11週 2変数関数の極限と連続性 準備学習:教科書pp.144-148の解説を読み、理解しておく事。 第12週 偏微分係数と偏導関数 準備学習:教科書pp.149-152の解説を読み、理解しておく事。 第13週 高次偏導関数と全微分 準備学習:教科書pp.153-156の解説を読み、理解しておく事。 第14週 2変数関数の極値 準備学習:教科書pp.160-163の解説を読み、理解しておく事。 第15週 定期試験 準備学習:前期に学習した内容の総復習を行い、試験に備える事。
- <成績評価方法及び水準>
- 定期試験(70〜80%程度)と小テスト(30〜20%程度)による評価(100点満点)が60点以上の者に単位を認定する。
- <教科書>
- 「微分積分学入門(改訂版)」岩谷輝生、河合浩明、田中正紀共著(学術図書出版社)
- <参考書>
- 高等学校で用いた数学の参考書(数学II・B、できれば数学III・Cも)を併用すると理解が深まる。
- <オフィスアワー>
- 金曜1〜3限の授業前後
- <学生へのメッセージ>
- 予習・復習をしっかり行い授業に臨む事。
特に後半では高校ではやらなかった偏微分を学習するが、最低でも前期で学習した微分の知識が必要となる。
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2014 Kogakuin University. All Rights Reserved. |
|