2008年度工学院大学 第1部機械工学科 メカノデザインコース
応用解析学(Applied Analysis)[3D01]
2単位 中村 淑子 非常勤講師
- <授業のねらい及び具体的な達成目標>
工学の基礎的な法則は微分方程式で表現される。本講では,偏微分方程式とその解法に必要な数学的手法を学ぶ。講義の大部分は,基本的でしかも広く現れる二階線形微分方程式(双曲型,放物型,楕円型)の初期値問題・境界値問題にあてられる。 また,この解法に関連して,直交関数展開やフーリエ級数展開についても学ぶ。 (注意:実数関数の微分・積分は既知とし,常微分方程式についても初歩的な知識は仮定する。なお,本講では解の存在や級数の収束性に関する詳細な議論は行わず,解を求めることや,その物理的意味に主眼を置く。また,数値解法についても議論しない。)
- <授業計画>
1. 序論。工学に現れる,常微分方程式と偏微分方程式の例。 2. 簡単な常微分方程式を解く。初期条件或いは境界条件。 3. 偏微分方程式の定義と分類。 4. 一階線形偏微分方程式の解法。境界条件の意味。 5. 一階準線形偏微分方程式と特性方程式。 6. 二階偏微分方程式の分類。初期値問題、境界値問題。 7. 一次元波動方程式(双曲型)の初期値問題 (無限に長い弦の振動)。ダランベールの解。 8. 一次元波動方程式の境界値問題(半無限の弦の振動)。 9. 両端を固定した弦の振動の解法1 10. 両端を固定した弦の振動の解法2−変数分離法 11. フーリエ級数展開 12. 波動方程式再考(フーリエ級数による解法) 13. 一次元熱伝導方程式(放物型)のFourier級数による解法。 14. 定期試験
- <成績評価方法及び水準>
1)時間がある範囲で、授業の最後にその日の内容を題材に簡単な演習を実施する。(解答を提出) 2)適宜、演習問題を出し、宿題として解答レポートの提出を求める。 3)前ニ者の解答について計30点満点で評価し、A点とする。 4)定期試験は、100点満点で評価し、F点とする。 5)最終評価点Xは、X=F+R*A 修正係数Rは、Fが30点以下でR=1、それ以上では漸減し、F=100ではR=0である。Xが60点以上を合格とする。
- <教科書>
特になし。必要な場合は,プリントを配布する予定。
- <参考書>
「キーポイント 偏微分方程式」 河村哲也著 (岩波書店 理工系数学のキーポイント・10 ) 「偏微分方程式」渋谷仙吉、内田伏一共著 (裳華房 物理数学コース) 「偏微分方程式(新訂版)」加藤義夫著 (サイエンス社 現代数学への入門 11 ) その他、必要に応じて講義で指示する。
- <オフィスアワー>
水曜日16:10−16:30講師室
- <学生へのメッセージ>
自分の手を動かして,数多くの例を計算してみることが重要である。 なるべく具体的な応用例を取り上げるので,労を惜しまず勉強すること。出席と演習を重視する。
このページの著作権は学校法人工学院大学が有しています。
Copyright(c)2008 Kogakuin University. All Rights Reserved. |
|